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I. INTRODUCTION

This report describes the measurement of the gamma and neutron
dose distributions in Core III of the Thermal Tungsten Nuclear Rocket

Critical Experiment. (1,2)

The reactor core consisted of a cylindrical
array of fuel elements and poison tubes in a watcr filled tank as shown

in Fig. 1. A top view of the core shown in Fig. 2 illustrates the twelve-
fold symmetry of the core assembly, the large circles representing fuel
elements and the smaller ones representing cadmium nitrate filled poison
tubes. Radial and axial dose distributions in the core were measured by
inserting specially constructed thimble ionization chambers in the hollow
spine of the fuel elements and in the poison tubes. The dosimeters were
of two types; one sensitive mainly to energy deposition from gamma rays
and fast neutrons. The absolute gamma sensitivity of the ionization cham-
bers was determined using an X-ray machine, C060 radiation and 7 MeV
electron bremsstrahlung. The radiative energy deposition in the neutron
dosimeters was determined by comparing the dosimeter response with
that of a water calorimeter in a TRIGA Mark I reactor. A time history

of the gamma intensity in the critical assembly core was also measured,

showing the contribution of delayed gamma to the total gamma radiation.

II. THIMBLE IONIZATION CHAMBERS

The two types of thimble ionization chambers used for these mea- |
surements were: a) carbon walled, carbon dioxide filled chambers for
gamma dosimetry and b) polyethylene walled, ethylene gas filled cham-
bers for fast neutron dosimetry. The configuration of the radiation-
sensitive portion of the chambers were designed at General Atomic; the
chambers were fabricated by the Landsverk Electrometer Company and
incorporated into the standard Landsverk charging system. ' The chambers
are shown diagrammatically in Figs. 3 and 4. An exploded view of one of

these is shown in Fig. 5. The chambers were hermetically sealed so that

——
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Fig. 1--Cross section of reactor tank and core support structure




Fig. 2--Gridplate identification scheme
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embly view of carbon dosimeter

Fig. 5--Disass



they could be immersed in water without discharging them. They were
charged and read by exerting pressure on the contact pin; this stretches
the bellows until the pin makes contact with the electrode (see Fig. 3).

The charger-reader was a Landsverk Model L-64 which has a
smalil capacitancc compared to that of the ionization chambers and there-
fore can be ignored. The electrical leakage rate of the dosimeters was
about 2% full scale per day.

The design of the thimble ionization chambers is discussed in the

following two sections.

2.1 GRAPHITE-CARBON DIOXIDE THIMBLE IONIZATION CHAMBERS

Sixteen chambers having graphite walls, filled with carbon diox-
ide, and sensitive primarily to energy deposition from gamma rays were
used. These devices have a small inherent neutron sensitivity due to
carbon recoils. Because of the short range of the recoils, virtually all
of the neutron response results from ionization created by particles
originating in the gas. In order to reduce the response to ionization pro-
duced in the cavity by proton recoils from the polystyrene insulator the
chambers were designed so that only a small solid angle was subtended
by the effective cavity volume at the insulator. This is the purpose of
the 0. 015-in, thick aluminum shield shown in Fig. 3. The effectiveness
of this design is aided by the poor collection efficiency near the insulator.
The outside diameter of the chambers was limited to 0,490 in. so that they
would fit into the center of the fuel element support post and the poison
tubes. This limited the thickness of the graphite walls to 0, 544 gnri/cm2
which exceeds the range of a 1.25 MeV electron and provide for charged

(3,4

)
particle equilibrium " for a 1.5 MeV photon. During the measurements
the ionization chambers were surrounded by aluminum in the fuel elements
and both aluminum and water in the poison tubes; this in effect increased

the thickness of wall material surrounding the ionizable volume of the



chambers. Generally, equilibrium ionization is reached at thicknesses
much less than the range of the highest energy secondary electron. |
Assuming that only aluminum surrounded the ionizable volume, then for
Compton interactions the absorbed dose would be 4% less than for carbon.
Il the ionizable volume is surrounded by water, the absorbed dose would

(4)

be 11% more. Since the carbon walls are an equilibrium thickness

for 1.50 MeV gammas, only those gammas above this range are in ques-
tion. However, in the worst case, i.e., assuming water around the car-
bon wall dosimeter, and considering that only about 0. 4 of the fission
energy is above this value, the error caused by the walls not being in
equilibrium should be not more than 4%. The graphite-carbon dioxide
dosimeters are 1.9 in. long and have an ionizable volume of 0. 176 cm3.
The 0. 064-in. diameter aluminum-graphite electrode structure shown

in Fig. 3 gives the electrode stability and helps tailor the energy response

while limiting the amount of aluminum in the ionizable volume.

2.2 POLYETHYLENE-ETHYLENE THIMBLE IONIZATION CHAMBERS

Nine polyethylene walled ethylene-filled chambers were used.

They are sensitive to energy deposition from both gamma rays and fast
neutrons., Physically they were 1.85 in. long with an ionizable volume

of 0. 040 cm3 as shown in Fig. 4. The aluminum electrode is 0. 025 in.
in diameter. The diameter of these chambers was also limited to 0.490
in. for the same reasons as the graphite wall dosimeters, resulting in a
wall thickness of the polyethylene of 0. 385 gm/cmz. This thickness ex-
ceeds the range of 1.0 MeV electrons, providing an equilibrium thickness
for 1.25 MeV gamma rays. The polyethylene-walled ionization chambers
were placed mainly in poison tubes and therefore, for most of the mea-
surements, were surrounded by water. Since the absorbed dose in water

and polyethylene varies by only about 3% in the Compton region, this



increases the effective thickness of the wall material surrounding the
ionizable volume, reducing the maximum error caused by the walls not

being infinite to about 3%.

ilI. ABSOLUTE CALIBRATION OF THE ENERGY DEPOSITION IN
THE GRAPHITE CHAMBERS

The graphite-walled carbon dioxide~filled thimble ionization
chambers were absolutely calibrated by comparison with a Victoreen
Model 70-5 thimble chamber.

A 7 MeV beam of electrons from the General Atomic linear accel-
erator impinged upon a thick fansteel (89% tungsten, 7% nickel, 4% copper)
target, producing a bremsstrahlung spectrum with nearly a fission source
distribution. Since the electron beam was 7 MeV, which is below the
threshold for (y, n) reactions, no neutrons were produced. A 4-in. thick,
12-in, diameter graphite disc, shown in Fig. 6, was placed 74 in. from
and on the center line with the bremsstrahlung target. Eighteen 1/2-in,
diameter holes 2-3/4 in. deep were drilled into the disc on a 9-in. dia-
meter circle. One of these holes was enlarged to accomodate the Vic-
toreen chamber. The thickness of graphite between the ionization cham-
ber and the front surface of the disc was 3.2 cm, being slightly greater
than the range of a 7 MeV electron. During the measurements, the disc
was rotated at 2 rpm to insure a uniform dose to each of the dosimeters.
All of the graphite dosimeters were placed in the graphite disc at the same
time, eliminating any intercalibration errors among the dosimeters.

Since the range of the Victoreen dosimeter was limited tc 25

(5)

roentgens, a photodiode-plastic fluor detector’ ° was used to monitor the
measurements and perform an intercalibration. All of the Landsverk
carbon-walled dosimeters were intercalibrated on a relative basis during

. . 3
a single measurement. The instantaneous dose rate was 1 x 10” r/sec,
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using a pulse length of 4.5 usec and a pulse repetition rate of 180 per
sec from the Linac, yielding a total dose of approximately half scale

or about 1400 roentgens for a running time of 30 minutes. The Victor-
(5)

. 4
een chamber has a linear response at dose rates below 5 x 10" r/sec;

cpected that the Landsverk dosimeters are linear up to at least

The exposure level of the Victoreen thimble chamber versus the
monitor reading was measured several times to obtain an average value;
the maximum deviation was less than 1%. The same geometry used for
the Landsverk dosimeters was used for this measurement. For each
measurement the Victoreen dosimeter was irradiated for a length of
time sufficient to obtain a midscale reading.

The Victoreen ionization chamber reading was corrected by the
ratio of the monitor readings for the two measurements and converted
to rads by the conversion factor 1 roentgen equals 0.87 rad. The per-
cent of full scale for the Landsverk carbon wall dosimeters was multi-
plied by 2500 rads, which was the expected full scale reading, and
divided by the corrected value of the Victoreen ionization chamber read-
ing in rads to give the sensitivity of the Landsverk dosimeters. The
Landsverk chamber reading divided by the sensitivity was used to give
the true absorbed dose. It is estimated that this absolute calibration
procedure gives the true absorbed dose within + 5%. The possible in-

dividual errors in this calibration are summarized below:

+

N

b in the average energy to produce an ion pair in air for
the roentgen-to-rad conversion.

+ 2% in the reading of the Landsverk dosimeters
+ 2% in the reading of the Victoreen dosimeter
+ 1% in the value used to convert the Victoreen ionization

chamber reading to the intercalibration run for the
Landsverk ionization chambers.
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+ 2% in the monitor readings
+ 2% in the true roentgen value of the Victoreen dosimeter.

In this calibration, the Victoreen ionization chamber behaves as
a thin-walled ionization chamber filled with air and surrounded by an
air equivalent material, in this case carbon, The mass energy absorp-
tion coefficient for carbon and air is the same for electron energies
from 7 MeV to about 150 keV. The Victoreen dosimeter has a nylon wall
with a nominal thickness of 67 mg/crn2 which is larger than the range of
a 270 keV electron. It is intended for use over an effective energy range
of 30-400 keV. In the energy range of 30 to 400 keV the chamber had an
efficiency of 1. 00. However, even at 20 keV its efficiency drops only to
0.90 and at 10 keV it is about 0.65. Therefore, the Victoreen ionization
chamber, when used in the thick carbon block, behaves as an air-equiva-
lent dosimeter under the conditions discussed above from about 7 MeV
to about 20 keV.

The results of the absclute calibration of the graphite walled car-
bon dioxide-filled Landsverk dosimeter are tabulated in Table 1. A
typical energy response curve for a carbon chamber is shown in Fig. 7
and for a polyethylene chamber in Fig. 8. The energy response for each
dosimeter is listed in Table 2 as measured by the Landsverk Electro-
meter Company.

The polyethylene chambers were also placed in the graphite disc
as a means of intercalibration. Since the walls of these chambers are
polyethylene the absorbed dose is characteristic of polyeihylene and
therefore roughly 1, 14 larger than the dose in carbon. On this basis an
estimate of the rad value of the polyethylene chambers can be made; it

is shown in Table 1.
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Table 1
DOSIMETER CALIBRATION USING 7.0 MeV BREMSSTRAHLUNG
RADIATION
Dosimeter Reading in
Landsverk % of Full Scale Rad Value Corrected Dosimetex
Dosimeter Uncorrected Drift Corrected Guiained {rom Fuli Scale Rad Value

Number Reading Correction  Reading  Victoreen R Meter Indiv. Run Average
C-1 56. 4 0 56. 4 2300 4078 4039
C-1 51.0 0 51.0 2030 3960
Cc-2 63.5 0 63.5 2300 3622 3622
C-3 63.5 0 63.5 2300 3622 3573
C-3 57.6 0 57.6 2030 3524

C-1A 63.2 0 63.2 2300 3639 3639
C-§ 57.9 0 57.9 2300 3972 3941
C-5 51.9 0 51.9 2030 3911
C-6 56.0 0 56.0 2300 4107 4107
C-1 58.0 0 58.0 2300 3966 3928
C-7 52.2 0 52.2 2030 3889
C-8 63.2 0 63.2 2300 3639 36:9
C-9 56.8 0 56. 8 2300 4049 4038
C-9 50.4 0 50. 4 2030 4028
Cc-10 61.4 0 61.4 2300 3746 3746
C-11 56.2 0 56. 2 2300 4093 4089
C-11 49.7 0 49.7 2030 4085
c-12 60.9 0 60.9 2300 3777 3777
C-13 71.5 0 71.5 2300 3217 3194
Cc-13 64.0 0 64.0 2030 3171
C-14 58.9 0 58.9 2300 3905 3886
C-14 52.5 0 52.5 2030 3866
Cc-15 61.8 3.7 58.1 2300 3959 3959
C-16 65.2 .6 64.6 2300 3560 3560
P-1 26.9 0 26.9 2630 780 9530
P-1 25.0 0 25.0 2320 9280
P-2 22.2 0 22.2 2320 10440 10440
P-3 22.3 O 22.3 2320 10400 1Q400
P-4 23.6 0 23.6 2320 9840 9840
P-5 22.0 0 22.0 2320 19530 10530
P-6 25.5 0 25.5 2320 9100 9100
P-7 26.8 0 26.8 2320 8650 8650
P-8 28.0 0 28.0 . 2320 8280 8280
P-9 22.0 0 22.0 2320 10530 10530
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Table 2

THE LANDSVERK ELECTROMETER COMPANY
CALIBRATION CERTIFICATEX*

60

Serial No. Range Cco 120 keV 80 keV 46 keV
ct 2500 RAD 76.2 81.1 89. 6 46.6
(Carbon)
C2 " 78.4 82.5 90.3 44.3
C3 " 94.4 93.5 88.8 51.2
C4 " 74.0 73.3 66.9 35.9
Cs " 86.0 84.8 89.6 43.7
Cé6 " 84.4 83.6 77.17 42.9
C7 " 87.0 86.0 81.6 46.0
C8 " 84.8 84.2 76.8 42.0
C9 " 80.0 79.4 82.7 40.0
Cl¢ " 90.2 89.3 81.9 43.5
Cll b 85.6 84.8 80.3 41.7
cl2 " 85.2 84.4 77.3 41.7
Cl3 " 107.2 106. 2 96.0 49.2
Cl4 " 85.8 85.0 8l1.4 43.2
Cls " 84.4 83.4 75.5 42. 4
Clé " 94. 0 93.1 85.4 44.3
Pl 5000 RAD 88.6 93.9 90.6 51.8
(Polyethylene)
) 3 " 78.0 83.2 81.5 46.8
P3 " 81.2 82.3 78.6 45. 4
P4 " 94. 4 192.9 103.8 60.9
P5 " 80.0 85.3 84.4 4%.4
P6 " 75.2 72.9 69.2 36.1
P7 " 89.8 102.9 86.9 47.9
P8 " 84.6 86.5 85.2 43.2
P9 " 80.9 85.3 86.6 46.5

#*Dated November, 1965
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IV. ABSOLUTE CALIBRATION OF THE ENERGY DEPOSITICN IN
THE POLYETHYLENE CHAMBERS

4.1 DESIGN CONSIDERATIONS OF THE CALORIMETER

A calorimeter was designed and built to provide a means of cali-
bration for the polyethylene dosimeters. Water was used for the neuiron
energy absorbing medium of the calorimeter, Because radiation fluxes
produced in the NUROC core when it is operated around 100 watts are
insufficient to produce an appreciable temperature rise in water
(~ 10-40C/min at 100 watts could be expected), the calorimeter was de-
signed to be used in the Torrey Pines TRIGA Mark I reactor which may
be operated at a much higher power and hence produce a much greater
temperature rise rate. The outer jacket of the calorimeter was held to
a maximum diameter of 1.250 in, to allow it to fit into a tube in the TRIGA
core. Since the size was restricted, an adiabatic jacket was used to re-
duce heat transfer between the water absorbing mass and its environment.
This adiabatic jacket was placed half-way between the outer jacket and the
water mass and was made of aluminum and epoxy with a nichrome heat-
ing coil potted into the epoxy; adjustment of the power dissipated in the
coil almost completely eliminated heat transfer between the water mass
and its environment., Heat transfer was further reduced by using fine
(. 006 in, diameter) copper connection wires to lead into the water mass,
keeping all heat paths between the water mass and the adiabatic jacket
long and of small cross sectional area. All interior surfaces were
painted white and the area around the jacket was evacuated. Since the
neutron and gamma energy would be absorbed by the vessel walls as
well as by the water, the vessel was designed to have a small mass com-~
pared to the water mass. Sheet polyvinyl chloride (PVC) was thermo-

formed into a two-piece bottle with approximately . 004 in. thick walls,

A thin (~. 002 in, ) coating of epoxy was painted on the outside of the
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vessel to eliminate vapor pumping since the PVC is not impervious to
water vapor. Details of the calorimeter are shown in Figs. 9,,10,,
and 11.

Fine control of the temperature difference between the water
mase and the adiabatic jacket and the ability to accurately sense small
incremental temperature changes in the water mass dictated the use of
thermistors as temperature sensing elements. The thermistors selected
were Fenwall bead, type GA 45J1, with a nominal resistance at 25°C of
50, 000 ohms, a spherical diameter of . 043 in. and a temperature co-
efficient of resistance of 4.6%/°C. A pair of these thermistors, matched
to within 0. 2% of each other, were imbedded, one in the adiabatic jacket
and one in the water mass; they form two legs of a bridge circuit as
shown in Fig. 11 and were used to control the temperature of the adiabatic
jacket with respect to the water mass to eliminate heat transfer. An addi-
tional thermistor in the water mass formed one leg of the other bridge
circuit of Fig. 11 and was carefully calibrated to allow accurate monitor-
ing of the rate of temperature rise in the water mass. The calibration
procedure for the thermistor was as follows: The entire water mass
assembly was placed in a large volume of water contained by a vacuum-
jacketed glass-walled flask. A copper-constantan thermocouple was
located on the surface of the calorimeter water mass and, using an ice
bath cold junction, connected to a Rubicon precision potentiometer which
allowed accurate determination of the temperature of the water bath.
A battery-driven resistance heater was used to slowly raise the temper-
ature of the water bath and the calorimeter water mass assembly sus-
pended within it. The output of the bridge circuit as a function of tem-
perature change was monitored by the Hewlett-Packard 425A microvolt-
meter and a Varian strip chart recorder, and was found to be 14. 85 milli-
volts per degree centigrade which agreed very well with calculations

based on the manufacturer's rated temperature coefficient of resistance.
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This constant was used in the analysis of subsequent data. A 4.25-ohm
nichrome heater coil was included in the water absorbing mass to con-

trol the temperature and provide a check on the operation of the system,

4.2 CALORIMETER OPERATION

Once the jacket controls were correctly adjusted, the calorimeter
was tested by applying power to the water mass coil and observing the
rate of temperature rise of the water mass on the strip-chart recorder.
The slope of the temperature rise curve (in millivolts per minute) gives
the heating rate since the thermistor constant is known to be 14. 85 milli-
volts per degree centigrade.

When the calorimeter was operated in the reactor, a temperature
rise rate of 0. 08290C per minute was observed at a steady state reactor
power level of 10 kilowatts; this rate was obtained from the recorder
trace which showed a voltage change rate (due to the change in resistance
in the calibrated thermistor in the water mass) of 1.23 millivolts per
minute. Since 0. 08290C/minute corresponds to 0, 0829 gram-calories
per gram per minute for water at 13°C (the temperature of the reactor
water during the calibration runs) the heat input rate to the calorimeter

water mass is given by

0. 0829 gram-calories/gram-minute x 4. 19 x 107 ergs/gram-calorie
= 3.47 x 100 ergs/gram-minute

and the dose rate in water is

6
. 1 -mi
3.47 x 10_ ergs/gram-minute = 3.47 x 104 rads/minute at 10 KW

1 02 ergs/gram-rad
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The reactor power level during the irradiation of the dosimeters
was 1.8 kilowatts; therefore the dose rate in water corresponding to the
readings of the dosimeters is 6250 rads/minute.

As a check on the calorimeter operation, the reactor was operated
at 20 kilowatts with a heating rate of . 1670C/min being obtained in the
calorimeter water mass. Doubling the power doubles the heating rate
which indicates that the relative power rates of the reactor are well
known and that the calorimeter is able to accurately follow the reactor
power level changes.

The results of the absolute calibration of the polyethylene cham-
bers against a water calorimeter is shown in Table 3. Also shown is the
calibrated rad reading of several carbon ion chambers which were placed

in the same reactor core position as the polyethylene chambers.

V. THIMBLE IONIZATION CHAMBER MEASUREMENTS IN CORE III
OF THE TUNGSTEN NUCLEAR ROCKET REACTOR

The Tungsten Nuclear Rocket Reactor core exhibited a twelve-fold
symmetry as shown in Fig. 2. All of the thimble ionization chamber
measurements were made in one sector of symmetry. The placement
of these chambers is shown in Fig. 12. A total of 25 ionization chambers
was used for each measurement: 16 graphite and 9 polyethylene walled
chambers. A total of four runs was required; the power level for each
run was 84, 2 watts,

The ionization chambers were placed above and below the zircon-
ium stud in the fuel elements using 3/8-in. diameter, 0.060-in. wall
thickness aluminum tube spacers. In the poison tubes, 5/16-in. dia-
meter, 0,060-in. wall thickness aluminum tube spacers were used and
the void between chambers was filled with cadmium nitrate. For each

run the same graphite-walled chamber was placed in the G-7 fuel ele-

ment and the same polyethylene chamber in the G-16 poison tube to monitor
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Table 3a

CALIBRATION OF THE ION CHAMBERS IN THE
TRIGA REACTOR

Dosimeter Reading in

Landsverk Percent of Full Scale Rad Value Corrected Dosimeter
Dosimeter Uncorrected Position Corrected Obtained from Full Scale Rad Value
Number Reading = Correction Reading  Calorimeter  Individual Run Average
P-1 9.5 . 982 48.6 6250 12860 12860
P-2 41.1 1. 02 41.9 6250 14620 14920
P-3 43.4 1.02 44.3 6250 14090 14090
P-4 45.0 .982 44.1 6250 14190 14190
P-5 43.1 1.02 43.9 6250 14220 14220
P-6 55. 4 . 982 54.4 6250 11480 11400
P-6 56. 3 .982' 55.3 6250 11310
P-7 50. 4 1.02 51.4 6250 12150 12150
P-8 51.5 .982 50. 6 6250 12360 12360
P-9 43.5 .982 42.7 6250» 14620 14620
P-9 41.3 1.02 42.2 6250 14810
P-9 42.4 1.02 43.3 62506 14420
Table 3b

Dosimeter Reading in

Landsverk Percent of Full Scale : Rad Value for Dosimeter
Dosimeter Uncorrected Position Corrected Reading Corresponding
Number Reading Correction Reading to Percent Full Scale
Cc-2 60.8 1.02 62.0 2246
C-5 57.4 1.02 58. 6 2309
C-9 53.3 1.02 54.3 2152

C-14 56.5 .982 55.5 2196
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the relative power level between runs. The relative variation in the
power level from run to run as indicated by the ionization chambers was
about 3%. Each run lasted 40 minutes; the period of the reactor was 30
seconds, resulting in a total of about 139 seconds to reach full power
(about 6% of the total running time). It took approximately 8 minutes to
remove the chambers from the poison tubes and about 10 minutes to re-

move them from the fuel elements after the reactor was shut down.

VIi. TIME HISTORY OF THE GAMMA INTENSITY IN CORE III OF THE
TUNGSTEN NUCLEAR ROCKET REACTOR

A determination of the gamma intensity time history was made
for each of the four reactor operating runs in which dosimetry measure-
ments were made. A gamma scintillation detector capable of discrimin-
ating against fast neutrons was used. The recorded output of this detec-
tor provided a measurement of the relative gamma intensity from the
reactor core as a function of time. The contribution of delayed gammas
to the prompt radiation is illustrated in Figs. 13 to 16.

The scintillating solution used in the gamma detector employed

(6)

the nonhydrogeneous hexafluorobenzene (C6F6) as a solvent’ ' in order
to discriminate against fast neutrons. Small concentrations of two hydro-
geneous scintillators were used in solution; para-terphenyl at 4 grams
per liter and dimethyl POPOP at one gram per liter. The binary solution
was sealed in a ten-milliliter pyrex flask in an argon atmosphere to pre-
vent oxygen qﬁenching of the scintillations which were observed by a
DuMont 6292 photomultiplier tube. The output current from the photo-
multiplier varied between 1.5 x 10-8 ampere and 4.5 x 10'.7 ampere and
was recorded on a graphic recorder.

The detector was positioned about two feet above the beryllium

reflector at the edge of the core. The relative intensity of the gamma

radiation was measured as a function of time for each of the four reactor
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operating runs in which the gamma and neutron fluxes were mapped using
the carbon and polyethylene ion chambers.

The relative gamma intensity as a function of time for runs 1
through 4 is illustrated in Figs. 13 through 16 respectively. Typical
of each curve is the exponential increase in intensity on the 30-second
period of the reactor as it is brought up to power, leveling off at a con-
stant value of 84.2 watts. Each run was continuous for approximately
40 minutes with the exception of run 1 in which a scram occurred during
the run.

These graphs have been corrected for background effects, includ-
ing residual nuclear radiation and detector dark current. An examination
of each of the curves confirms the expected buildup in intensity of delayed
gammas from fission during the run and the gradual decay after shutdown.
For runs 2, 3, and 4 the intensity of delayed gamma radiation just prior
to shutdown of the reactor is 19.7%, 18.9%, and 19. 0% respectively, of
the prompt gamma intensity. These numbers correspond very well with
the point on the intensity curve where the exponential decay begins at
reactor shutdown. The decay tail of delayed gammas is clearly a com-
posite of several decay modes: the longest mode measured here, using
the data for runs 2 and 3, corresponds to a half-life of approximately 40

minutes,

VII. RESULTS AND DISCUSSIONS OF SOURCES OF ERROR IN THE
ABSORBED DOSE MEASUREMENTS IN CORE III OF THE
TUNGSTEN NUCLEAR ROCKET REACTOR

The results of the axial measurements of the gamma and neutron
absorbed doses in Core III of the Tungsten Nuclear Rocket Reactor are
graphed in Figs. 17, 18, 19, and 20 and tabulated in Table 4. The lines
are the ''best fit'' to the data. The arrows on the graphs indicate possible

defective data. The C-15 carbon dosimeter had an exceptionally high
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Table 4

RESULTS OF IONIZATION CHAMBER MEASUREMENTS IN CORE III
OF THE TUNGSTEN NUCLEAR ROCKET REACTOR

Distance from Dosimeter Absorbed Dose
Poison Core Bottom Plate Dosimeter Reading in % Normalizing Absorbed Dose in Carbon
Tube or Surfaceto Center Number of Full Scale Factor to Run in Water at Point Point of
Fuel of Dosimeter C=Graphite (Corrected for 1using C-14 of Measurement Measurement
Element Active Volume, cm P=Polyethylene Drift) as a Monitor Rads Rads
G-2 9.4 C-16 19.2 1. 021 698
G-2 37.1 C-11 24.8 1. 021 1035
G-2 62.1 C-1 23.9 1. 021 965
G-2 105.1 C-12 9.4 1. 021 362
G-2 67.0 P-1 22.8 1. 021 2994
G-4 9.4 C-5 26.0 1,009 1034
G-4 37.1 C-1 34,8 1, 009 1418
G-4 62.1 C-6 35.1 1,021 1472
G-4 84.7 Cc-7 26.2 1. 009 1038
G-4 105.1 *C-15 4.8 1. 021 194
G-4 32.4 *P-6 28.8 1. 026 3368
G-4 67.0 P-2 29.8 1,021 4540
G-7 9.4 C-5 30,0 1. 026 1213
G-7 37.1 Cc-12 44.3 1,026 1717
G-7 62.1 {Run 1 43.1 1. 000 1678
G-7 62.1 c-14 {Run 2 42,1 1. 026 1678
G-7 62.1 (Run 3 42,3 1,021 1678
G-17 62.1 (Run 4 42,8 1,009 1678
G-7 84.7 *C-15 22.9 1. 026 930
G-7 105.1 *C-15 5.1 1. 000 202
J-3 9.4 C-13 31,7 1.021 1034
J-3 62.1 C-12 35,1 1,000 1326
J-3 105.1 C-16 11.3 1. 000 402
K-1 9.4 C-16 16.8 1, 026 614
K-1 37.1 C-11 23.8 1, 026 998
K-1 62.1 Cc-11 23.6 1. 000 965
K-1 84.7 C-~1 17.1 1, 026 709
K-1 105.1 C-13 10.6 1. 000 339
g-4 6.6 C-3 21.6 1. 026 : 792
g-4 37.1 C-1A 25.3 1,026 945
g-4 62.1 C-1 23.6 1. 000 953
g-4 110, 0 Cc-3 6.6 1.000 236
g-4 11.4 P-1 17.8 1. 026 2349
g-4 32.4 P-5 21.6 1. 026 3151
g-4 67.0 P-2 20.6 1.000 3073
g-4 80.0 P-4 18.3 1,026 2664
g-4 105.3 P-1 8.6 1.000 1105

*
Suspected defective dosimeter



37

Table 4 (Continued)

Distance from Dosimeter

Absorbed Dose

Poison Core Bottom Plate Dosimeter Reading in % Normalizing Absorbed Dose in Carbon
Tubeor Surfaceto Center Number of Full Scale Factor to Run in Water at Point Point of

Fuel of Dosimeter C=Graphite (Corrected for lusing C-14 of Measurement Measurement
Element Active Volume, cm P=Polyethylene Drift) as a Monitor Rads Rads

g-6 6.6 Cc-3 23,3 1. 021 850

g-6 37.1 C-5 30.8 1. 021 1239
g-6 62.1 Cc-12 30.5 1.009 1162

g-6 84.7 *C-15 13.6 1. 009 543
g-6 110.0 C-13 5.6 1. 009 180

g-8 6.6 Cc-2 23.1 1. 026 858
g-8 37.1 C-6 33.5 1. 026 1412
g-8 62.1 Cc-2 35.1 1. 000 1271
g-8 84.7 C-1A 25.1 1. 000 913
g-8 110.0 C-10 8.6 1. 000 322
g-8 11. 4 P-3 22.3 1.026 3223

g-8 32.4 P-2 28.6 1. 026 4378

g-8 80.0 P-5 23.6 1. 000 3356

g-8 105.3 P-4 10.6 1. 000 1504

g-10 6.6 C-10 25.3 1. 026 972
g-10 37.1 C-7 37.3 1. 026 1503
g-10 62,1 C-5 36.6 1.000 1442
g-10 84.7 C-13 31.2 1. 026 1022
g-10 109.7 C-6 8.6 1.000 353
g-12 6.6 Cc-9 23.8 1. 026 986
g-12 37.1 C-8 48.5 1.026 1811
g-12 62.1 C-7 38.1 1.000 1497
g-12 84.7 Cc-8 34.6 1,000 1259
g-l2 110.0 Cc-9 8.6 1. 000 347
g-12 11. 4 P-7 27.0 1. 026 3365

g-12 32. 4 P-8 40.4 1. 026 5123

g-12 67.0 *P-6 29.6 1. 000 3374

g-12 80.0 P-8 32.6 1. 000 4029

g-12 105.3 P-7 12.1 1. 000 1470

h-8 6.6 C-16 29.5 1.009 1059
h-8 37.1 Cc-10 36.8 1.009 1391
h-8 62.1 C-7 33.5 1.021 1344
h-8 84.7 Cc-8 29.9 1.021 1111
h-8 110.¢ c-9 7.3 1.021 301
h-8 11.4 *P-6 21.3 1. 009 2450

h-8 32.4 P-5 29.3 1. 009 4204

h-8 67.0 *P-6 25.8 1.021 3003

h-8 80.0 P-8 29.0 1.021 3660

h-8 105.3 P-7 10.8 1.021 1340

*»*
Suspected defective dosimeter
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Table 4 (Continued)

Distance from Dosimeter Absorbed Dose

Poison Core Bottom Plate Dosimeter Reading in % Normalizing Absorbed Dose in Water at
Tubeor Surfaceto Center Number of Full Scale Factor to Run in Water at Point Point of

Fuel of Dosimeter C=Graphite (Corrected for 1lusing C-14 ofMeasurement Measurement
Element Active Volume, cm P=Polyethylene Drift) as a Monitor Rads Rads

j-4 6.6 C-9 17.8 1. 009 725

j-4 37.1 C-8 34.0 1. 009 1248

j-4 62.1 Cc-2 27.5 1,021 1017

j-4 84.7 *C-1A 5.9 1,021 219

j-4 110.0 c-10 6.7 1. 021 256

j-4 11. 4 P-7 19.6 1. 009 2403

j-4 32.4 P-8 29.1 1. 009 3629

j-4 67.0 P-3 24.4 1.021 3510

i-4 80.0 P-5 18.8 1.021 2730

j~4 105.3 P-4 9.0 1,021 1304

k-1 6.6 C-3 18.3 1.009 660

k-1 37.1 C-6 24.8 1. 009 1028
k-1 62.1 c-2 25,0 1,009 914
k-1 84.7 C-11 16.9 1.009 697
k-1 110.0 C-1A 5.3 1. 009 195
k-1 11. 4 P-1 17.6 1.009 2284

k-1 32.4 P-2 21,1 1. 009 3176

k-1 67.0 P-3 20.3 1,009 2886

k-1 105.3 P-4 7.3 1. 009 1045

g-16 23.5 P-9 31.1 1, 000 4547

g-16 23.5 P-9 30.8 1,026 4620

g-16 23.5 P-9 30.3 1.021 4523

g-16 23.5 P-9 31.3 1,009 4617

*
Suspected defective dosimeter
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drift rate for which it was difficult to accurately correct. One reading

of the C-1A carbon chamber reading is also suspect due to rough handling.
The readings of the P-6 polyethylene dosimeter are suspect because the
intercalibration ratio for the 7 MeV bremsstrahlung and the water calori-
meter were different.

Two important considerations need to be elucidated. The poly-
ethylene chambers were calibrated against a water calorimeter. This
means that the absorbed dose for these chambers is characteristic of
water and not polyethylene. Since they were calibrated in the TRIGA
Mark I, the degree of accuracy of the calibration of the polyethylene
dosimeters depends on the degree of accuracy of the assumption that the
gamma and neutron spectra in Core III cf the Tungsten Nuclear Rocket
Reactor is similar to that in TRIGA Mark I. The carbon dosimeters have
been found to have an inherent response to neutrons. This response is
difficult to determine precisely but has been estimated to be about 28%,
and is also contingent upon the above discussed assumption. The neutron
response of the carbon chamber was estimated by placing some of the
carbon chambers in the same position as the calorimeter was placed. The

ratio of the gamma dose in water to the dose in carbon is D 0/D =1.11.

H C

2

The ratio of the neutron dose in water to the dose in carbon is DH 0/DC =
2

7.0. If the gamma dose in carbon is represented by A and the neutron

dose in carbon by B then:

Carbon: A+ B = R1

Water: l.llA+7B=R2
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are the rad values obtained for the carbon chamber and

. (7)

the water calorimeter respectively.

Where Rl and R
If these equations are solved
simultaneously then the neutron response of the carbon chamber can be
determined and is B/Rl° The data have not been corrected for the fast
neutron response of the carbon chambers. It should be pointed out that
the neutron response of the carbon chambers is a strong function of neu-
tron energy and that additional calculations are required to determine the
average response in the core spectrum,

It is estimated that the absolute calibration procedure for the
polyethylene chambers gives the true absorbed dose in water within
£ 8%.

The possible individual errors in this calibration are summarized

below:

£ 2% in the reading of the Landsverk dosimeter
+ 2% in the relative monitor of the TRIGA power level

+ 2% in the uncertainty in time of the insertion of the
dosimeters in the TRIGA core.

+ 7% in the calibration of the calorimeter

t 1% in the dosimeter position corrective factor.

The possible individual errors in the measurements in Core III

of the Tungsten Nuclear Reactor are summarized below:

£ 2% in the reading of the Landsverk dosimeter
=+

8% in the absclute calibration of the polyethylene chamber

H
n
]

in the
in e

absolute calibration of the carbon dosimeters

* 3% in the time at which the reactor is at maximum power

level,

A negligible error was in the dose received by the chambers
while being removed from the poison tubes and fuel elements. The fuel
elements were reading an average of 2 r/hr at the surface and the dosi-
meters remained in the fuel elements for a maximum of 15 minutes

after the run.
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On this basis the probable error in the measuréements using the

polyethylene chambers is + 9%; for the carbon dosimeters it is £ 6%.
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